Reconocimiento de habilidades de docentes en aprendizaje colaborativo soportado por computadora mediante minería de textos

Los sistemas de Aprendizaje Colaborativo Soportado por Computadora (ACSC) permiten el aprendizaje grupal con independencia del tiempo y espacio donde estén localizados los estudiantes y los docentes. Sin embargo, las interacciones que conducen a la creación colaborativa de conocimiento no surgen de...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Santana Mansilla, Pablo, Costaguta, Rosanna, Missio, Daniela
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2013
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/76349
http://42jaiio.sadio.org.ar/proceedings/simposios/Trabajos/ASAI/13.pdf
Aporte de:
Descripción
Sumario:Los sistemas de Aprendizaje Colaborativo Soportado por Computadora (ACSC) permiten el aprendizaje grupal con independencia del tiempo y espacio donde estén localizados los estudiantes y los docentes. Sin embargo, las interacciones que conducen a la creación colaborativa de conocimiento no surgen de manera espontánea y la tecnología puede inhibirlas u obstaculizarlas. Para colaborar efectivamente los estudiantes necesitan principalmente de un etutor (docente) que coordine la interacción grupal. La selección de e-tutores capacitados es clave para el éxito del ACSC pero el análisis manual de las interacciones registradas en estos entornos para conocer el desempeño de los docentes requiere mucho tiempo y esfuerzo. En este artículo se describe un trabajo de investigación que aplica técnicas de minería de textos para crear clasificadores que permitan identificar automáticamente las habilidades manifestadas por e-tutores. Los resultados obtenidos mediante diferentes algoritmos de clasificación son presentados, analizados y comparados.