An ant colony optimization algorithm for job shop scheduling problem

The nature has inspired several metaheuristics, outstanding among these is Ant Colony Optimization (ACO), which have proved to be very effective and efficient in problems of high complexity (NP-hard) in combinatorial optimization. This paper describes the implementation of an ACO model algorithm kno...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Flórez, Edson, Gómez, Wilfredo, Bautista, Lola
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/76211
http://42jaiio.sadio.org.ar/proceedings/simposios/Trabajos/ASAI/07.pdf
Aporte de:
Descripción
Sumario:The nature has inspired several metaheuristics, outstanding among these is Ant Colony Optimization (ACO), which have proved to be very effective and efficient in problems of high complexity (NP-hard) in combinatorial optimization. This paper describes the implementation of an ACO model algorithm known as Elitist Ant System (EAS), applied to a combinatorial optimization problem called Job Shop Scheduling Problem (JSSP). We propose a method that seeks to reduce delays designating the operation immediately available, but considering the operations that lack little to be available and have a greater amount of pheromone. The performance of the algorithm was evaluated for problems of JSSP reference, comparing the quality of the solutions obtained regarding the best known solution of the most effective methods. The solutions were of good quality and obtained with a remarkable efficiency by having to make a very low number of objective function evaluations.