Video Surveillance for Road Traffic Monitoring
This work proposes a framework for road traffic surveillance using computer vision techniques. After a foreground estimation, post processing techniques are applied to the detected vehicles in motion to generate blobs. Then, a tracking approach based on Kalman filters is used to extract instantaneou...
Guardado en:
| Autores principales: | Torres, Guillermo, Caminal, Iván, Maldonado, Cristina, Górriz, Marc |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2018
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/73214 |
| Aporte de: |
Ejemplares similares
-
Vehicle classification and speed estimation using Computer Vision techniques
por: Yabo, Agustín, et al.
Publicado: (2016) -
Posterior Cramér-Rao bounds for discrete-time nonlinear filtering
por: Tichavský, Petr, et al.
Publicado: (1998) -
Experimental comparison of kalman and complementary filter for attitude estimation
por: Perez Paina, G., et al.
Publicado: (2011) -
Non-linear Kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation
por: Pascual, Juan Pablo, et al.
Publicado: (2019) -
Double Coupling Between Inertial Sensors and Visual Odometry in Multicopters
por: Paz, Claudio, et al.
Publicado: (2017)