Priorcovmatrix: explorar, visualizar y estimar matrices de covarianzas

La estimación de matrices de covarianza surge en problemas multivariados como la distribución normal multivariada o modelos de regresión generalizados mixtos donde los efectos aleatorios son modelados de forma conjunta. La inferencia Bayesiana sobre una matriz de covarianza requiere especificar una...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alvarez Castro, Ignacio
Formato: Objeto de conferencia Resumen
Lenguaje:Español
Publicado: 2018
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/72043
http://47jaiio.sadio.org.ar/sites/default/files/LatinR_3.pdf
Aporte de:
Descripción
Sumario:La estimación de matrices de covarianza surge en problemas multivariados como la distribución normal multivariada o modelos de regresión generalizados mixtos donde los efectos aleatorios son modelados de forma conjunta. La inferencia Bayesiana sobre una matriz de covarianza requiere especificar una distribución de probabilidades para dicha matriz. Las distribuciones que tienen como dominio las matrices de covarianza no han recibido mucha atención en términos de caracterizar sus propiedades. En este trabajo se presenta el paquete priorcovmatrix permite ajustar, simular y visualizar algunas distribuciones multivariadas utilizadas para modelar matrices de covarianza. La distribución Wishart inversa, Wishart inversa escalada, y otras distribuciones forman parte de la librería.