SMOTE-BD: An Exact and Scalable Oversampling Method for Imbalanced Classification in Big Data
The volume of data in today’s applications has meant a change in the way Machine Learning issues are addressed. Indeed, the Big Data scenario involves scalability constraints that can only be achieved through intelligent model design and the use of distributed technologies. In this context, solution...
Guardado en:
| Autores principales: | Basgall, María José, Hasperué, Waldo, Naiouf, Marcelo, Fernández, Alberto, Herrera, Francisco |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2018
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/69676 |
| Aporte de: |
Ejemplares similares
-
SMOTE-BD: An Exact and Scalable Oversampling Method for Imbalanced Classification in Big Data
por: Basgall, María José, et al.
Publicado: (2018) -
An analysis of local and global solutions to address Big Data imbalanced classification: a case study with SMOTE preprocessing
por: Basgall, María José, et al.
Publicado: (2019) -
FDR²-BD: A Fast Data Reduction Recommendation Tool for Tabular Big Data Classification Problems
por: Basgall, María, et al.
Publicado: (2021) -
Analysis and design of scalable pre-processing techniques of instances for imbalanced Big Data problems : Applications in humanitarian emergencies situations
por: Basgall, María José
Publicado: (2022) -
Análisis y diseño de técnicas de preprocesamiento de instancias escalables para problemas no balanceados en Big Data : Aplicaciones en situaciones de emergencias humanitarias
por: Basgall, María José
Publicado: (2022)