A Method to Shorten Signals in SM-OFDM
Spatial modulation (SM) added to traditional OFDM communications has been intensively studied as a candidate transmission method to convey high-speed, low-delay, powerefficient and high-mobility 5G communications in a reliable basis. This approach implies the use of multiple antennas at the transmit...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2017
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/65509 |
| Aporte de: |
| Sumario: | Spatial modulation (SM) added to traditional OFDM communications has been intensively studied as a candidate transmission method to convey high-speed, low-delay, powerefficient and high-mobility 5G communications in a reliable basis. This approach implies the use of multiple antennas at the transmitter. Then, the fundamental aspect revised in this work takes into account that in a single-carrier SM system, the selection of the active transmit antenna according to (part of) the information bits makes it possible to use a single power amplifier (PA) that is switched among the available antennas. On the other hand, in a conventional SM-OFDM system, every antenna needs to be continuously active as the index information is typically different for each subcarrier. Consequently, we propose a transmission scheme that precodes the information symbols in frequency domain, such that the global symbol period is split into partitions that enable a sequential operation of antennas which can be fed by a single PA. In addition, it is possible to establish that the proposed approach tends to be more robust against disturbances observed in high mobility environments. |
|---|