Feature extraction and selection using statistical dependence criteria
Dimensionality reduction using feature extraction and selection approaches is a common stage of many regression and classification tasks. In recent years there have been significant e orts to reduce the dimension of the feature space without lossing information that is relevant for prediction. This...
Guardado en:
| Autores principales: | Tomassi, Diego, Marx, Nicolás, Beauseroy, Pierre |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/56980 http://45jaiio.sadio.org.ar/sites/default/files/ASAI-13_0.pdf |
| Aporte de: |
Ejemplares similares
-
Semi-Supervised Target-Dependent Sentiment Classification for Micro-Blogs
por: Abudalfa, Shadi I., et al.
Publicado: (2019) -
Dimension reduction for hidden Markov models using the suficiency approach
por: Tomassi, Diego, et al.
Publicado: (2011) -
Hepatocellular Carcinoma tumor stage classification and gene selection using machine learning models
por: Palazzo, Martin, et al.
Publicado: (2019) -
A hybrid wrapper/filter approach for feature subset selection
por: Prati, Ronaldo C., et al.
Publicado: (2008) -
Estimación robusta para un modelo de reducción de la dimensión
por: Szretter Noste, María Eugenia
Publicado: (2017)