An exploratory analysis of methods for extracting credit risk rules
This paper performs a comparative analysis of two kind of methods for extracting credit risk rules. On one hand we have a set of methods based on the combination of an optimization technique initialized with a neural network. On the other hand there are partition algorithms, based on trees. We show...
Guardado en:
| Autores principales: | Jimbo Santana, Patricia, Villa Monte, Augusto, Rucci, Enzo, Lanzarini, Laura Cristina, Bariviera, Aurelio |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/56769 |
| Aporte de: |
Ejemplares similares
-
Extraction of Knowledge with Population-Based Metaheuristics Fuzzy Rules Applied to Credit Risk
por: Jimbo Santana, Patricia Rosalía, et al.
Publicado: (2018) -
Analysis of Methods for Generating Classification Rules Applicable to Credit Risk
por: Jimbo Santana, Patricia, et al.
Publicado: (2017) -
Simplifying credit scoring rules using LVQ + PSO
por: Lanzarini, Laura Cristina, et al.
Publicado: (2017) -
Variations of Particle Swarm Optimization for Obtaining Classification Rules Applied to Credit Risk in Financial Institutions of Ecuador
por: Jimbo Santana, Patricia, et al.
Publicado: (2019) -
A modified binary-PSO for continuous optimization
por: Orellana, Alina, et al.
Publicado: (2009)