Predicción de ingresos de causas penales utilizando programación genética lineal
Este trabajo propone una metodología de predicción de ingresos de causas penales utilizando Programación Genética Lineal (Linear Genetic Programming - LGP). El estudio se realizó en base a datos mensuales recogidos durante siete años (2007 a 2013), en los siete Juzgados Penales de Garantías de Ciuda...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/50049 |
| Aporte de: |
| Sumario: | Este trabajo propone una metodología de predicción de ingresos de causas penales utilizando Programación Genética Lineal (Linear Genetic Programming - LGP). El estudio se realizó en base a datos mensuales recogidos durante siete años (2007 a 2013), en los siete Juzgados Penales de Garantías de Ciudad del Este - Paraguay. La verificación del método propuesto se hizo mediante la comparación del método LGP implementado con modelos estadísticos conocidos como la regresión lineal, promedio móvil, suavizado exponencial y suavizado exponencial con tendencia, prediciendo valores sobre una serie de tiempo, de forma a comparar los errores promedios de cada metodología de predicción. Se utilizaron dos métricas de error: (1) el error cuadrático medio y (2) el error absoluto medio. Resultados experimentales demuestran la superioridad del LGP implementado sobre los demás métodos estadísticos para la predicción de ingresos de causas penales. |
|---|