Clasificación automática de evoluciones médicas multiclases en español

En este trabajo presentamos una comparación de metodologías de clasificación para texto libre de narrativas médicas, en este caso evoluciones médicas multiclase. Comparamos el rendimiento de redes neuronales y máquinas de soporte vectorial con preprocesamientos para clasificar evoluciones de Diabete...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Riccillo, Marcela L., Pérez, David, Luna, Daniel, Campos, Fernando, Otero, Carlos, Gambarte, María Laura, Benítez, Sonia
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2015
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/50035
Aporte de:
Descripción
Sumario:En este trabajo presentamos una comparación de metodologías de clasificación para texto libre de narrativas médicas, en este caso evoluciones médicas multiclase. Comparamos el rendimiento de redes neuronales y máquinas de soporte vectorial con preprocesamientos para clasificar evoluciones de Diabetes, en Tipo 1, Tipo 2 y Otros (otro tipo de afección). Se compararon accuracy, sensitivity y specificity, mostrando beneficios en costos de entrenamiento y resultados de exactitud. Encontramos porcentajes mayores con redes neuronales sin preprocesamiento PCA y en el caso de SVM con dicho preprocesamiento (con menor costo de entrenamiento).