Estructura algebraica de sistemas cuánticos en espacios de fases no-conmutativos
El presente trabajo ha tenido como objetivo explorar las propiedades de modelos cuánticos bidimensionales de nidos sobre dos tipos de espacios de fase no-conmutativos: el primero de ellos con parámetros de no-conmutatividad constantes en el espacio de fases, lo que rompe la invariancia de Lorentz, m...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Tesis Tesis de doctorado |
| Lenguaje: | Español |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/47964 https://doi.org/10.35537/10915/47964 |
| Aporte de: |
| Sumario: | El presente trabajo ha tenido como objetivo explorar las propiedades de modelos cuánticos bidimensionales de nidos sobre dos tipos de espacios de fase no-conmutativos: el primero de ellos con parámetros de no-conmutatividad constantes en el espacio de fases, lo que rompe la invariancia de Lorentz, mientras que en el segundo caso la no-conmutatividad es inducida por el corrimiento de las variables canónicas mediante la suma directa de generadores de una representación unitaria irreducible del grupo de Lorentz, preservando así esa simetría. |
|---|