Análisis de desempeño de una Implementación del algoritmo K-means en CUDA y OMP

En este trabajo se analiza el desempeño correspondiente a la implementación de un algoritmo de segmentación sobre hardware con procesadores multinúcleo y con Unidades de Procesamiento Gráfico –GPU- basado en la placa de video Nvidia utilizando programación CUDA, y se muestran métricas de ejecución,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiménez, Joaquín, Klenzi, Raúl O., Malberti, Alejandra
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2015
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/46187
Aporte de:
Descripción
Sumario:En este trabajo se analiza el desempeño correspondiente a la implementación de un algoritmo de segmentación sobre hardware con procesadores multinúcleo y con Unidades de Procesamiento Gráfico –GPU- basado en la placa de video Nvidia utilizando programación CUDA, y se muestran métricas de ejecución, que miden y comparan su desempeño respecto de su equivalente OpenMP y secuencial. Se paraleliza el algoritmo de segmentación K-means que se nutre con datos obtenidos del área de la astronomía que consisten en un catálogo descripto por una matriz con filas que representan galaxias y columnas que constituyen sus parámetros o atributos característicos. También se propone evidenciar el orden complejidad temporal de K-means, que es O(tkn)[1], donde n es el número de objetos, k el número de clusters y t el número de iteraciones. Se harán pruebas cambiando los valores de estas variables, mostrando los cambios en los tiempos de ejecución y en los SpeedUps logrados respecto del código secuencial.