Generating rescheduling knowledge using reinforcement learning in a cognitive architecture
In order to reach higher degrees of flexibility, adaptability and autonomy in manufacturing systems, it is essential to develop new rescheduling methodologies which resort to cognitive capabilities, similar to those found in human beings. Artificial cognition is important for designing planning and...
Guardado en:
| Autores principales: | Palombarini, Jorge, Barsce, Juan Cruz, Martínez, Ernesto |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2014
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/41737 http://43jaiio.sadio.org.ar/proceedings/ASAI/15.pdf |
| Aporte de: |
Ejemplares similares
-
A cognitive approach to real-time rescheduling using SOAR-RL
por: Barsce, Juan Cruz, et al.
Publicado: (2013) -
Real-time Rescheduling of Production Systems using Relational Reinforcement Learning
por: Palombarini, Jorge, et al.
Publicado: (2011) -
Automated Task Rescheduling using Relational Markov Decision Processes with Logical State Abstractions
por: Palombarini, Jorge, et al.
Publicado: (2012) -
Closed-loop Rescheduling using Deep Reinforcement Learning
por: Palombarini, Jorge A., et al.
Publicado: (2019) -
Evolution, learning, and cognition /
Publicado: (1988)