Evaluación de técnicas de Machine Learning para el reconocimiento de gestos corporales

El progreso y la innovación tecnológica alcanzados en los últimos años, en particular en el área de entretenimientos y juegos, han promovido la creación de interfaces más naturales e intuitivas. Por ejemplo, dispositivos de interacción natural como Microsoft Kinect permiten explorar una nueva forma...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ibañez, Rodrigo, Soria, Alvaro, Teyseyre, Alfredo Raúl, Campo, Marcelo
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2014
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/41722
http://43jaiio.sadio.org.ar/proceedings/ASAI/8.pdf
Aporte de:
Descripción
Sumario:El progreso y la innovación tecnológica alcanzados en los últimos años, en particular en el área de entretenimientos y juegos, han promovido la creación de interfaces más naturales e intuitivas. Por ejemplo, dispositivos de interacción natural como Microsoft Kinect permiten explorar una nueva forma de comunicación hombre-máquina mucho más expresiva mediante el reconocimiento de gestos corporales. En este sentido, han surgido diferentes estrategias que permiten el reconocimiento de gestos utilizando técnicas de Machine Learning. Sin embargo, no se ha hecho un estudio comparativo del comportamiento de estas técnicas. Por lo tanto, este trabajo presenta una evaluación de 4 técnicas de Machine Learning con un dataset de 7 gestos diferentes y 80 muestras para cada uno de ellos. Se evaluó la precisión de las distintas técnicas obteniendo resultados cercanos al 100% de los gestos evaluados en algunas de ellas.