Fisher information and semiclassical treatments
We review here the difference between quantum statistical treatments and semiclassical ones, using as the main concomitant tool a semiclassical, shift-invariant Fisher information measure built up with Husimi distributions. Its semiclassical character notwithstanding, this measure also contains abun...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo Contribucion a revista |
| Lenguaje: | Inglés |
| Publicado: |
2009
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/37578 http://www.mdpi.com/1099-4300/11/4/972 |
| Aporte de: |
| Sumario: | We review here the difference between quantum statistical treatments and semiclassical ones, using as the main concomitant tool a semiclassical, shift-invariant Fisher information measure built up with Husimi distributions. Its semiclassical character notwithstanding, this measure also contains abundant information of a purely quantal nature. Such a tool allows us to refine the celebrated Lieb bound for Wehrl entropies and to discover thermodynamic-like relations that involve the degree of delocalization. Fisher-related thermal uncertainty relations are developed and the degree of purity of canonical distributions, regarded as mixed states, is connected to this Fisher measure as well. |
|---|