A novel, Language-Independent Keyword Extraction method
Obtaining the most representative set of words in a document is a very significant task, since it allows characterizing the document and simplifies search and classification activities. This paper presents a novel method, called LIKE, that offers the ability of automatically extracting keywords from...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2013
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/31256 |
| Aporte de: |
| Sumario: | Obtaining the most representative set of words in a document is a very significant task, since it allows characterizing the document and simplifies search and classification activities. This paper presents a novel method, called LIKE, that offers the ability of automatically extracting keywords from a document regardless of the language used in it. To do so, it uses a three-stage process: the first stage identifies the most representative terms, the second stage builds a numeric representation that is appropriate for those terms, and the third one uses a feed-forward neural network to obtain a predictive model. To measure the efficacy of the LIKE method, the articles published by the Workshop of Computer Science Researchers (WICC) in the last 14 years (1999-2012) were used. The results obtained show that LIKE is better than the KEA method, which is one of the most widely mentioned solutions in literature about this topic. |
|---|