Aplicación de técnicas de minería de datos al análisis de situación y comportamiento académico de alumnos de la UGD

En el ámbito educativo es evidente la necesidad de disponer de sistemas de gestión que permitan tomar decisiones académicas y elaborar estrategias a partir del conocimiento oportuno, ya que esto no solo incide directamente sobre la funcionalidad de los departamentos académicos, u otras cuestiones in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Eckert, Karina, Suénaga, Roberto
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2013
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/27103
Aporte de:
Descripción
Sumario:En el ámbito educativo es evidente la necesidad de disponer de sistemas de gestión que permitan tomar decisiones académicas y elaborar estrategias a partir del conocimiento oportuno, ya que esto no solo incide directamente sobre la funcionalidad de los departamentos académicos, u otras cuestiones internas, sino que también podrían incidir sobre actividades como las evaluaciones y acreditaciones de instituciones y carreras. Entre los problemas más complejos que enfrentan las instituciones de educación podemos mencionar: mejorar la calidad académica, disminuir la deserción y la reprobación, evitar el atraso estudiantil y los bajos índices de eficiencia relacionado con las tasas de graduación. Esto requiere gestionar estrategias y tomar medidas frente a estos acontecimientos; para ello es posible recurrir al proceso denominado Minería de Datos Educacional (MDE), es decir, la aplicación del proceso de Descubrimiento o Extracción de Conocimiento en Bases de Datos (KDD) en ámbito educativo. En el presente trabajo se describe y expone la aplicación del proceso KDD (por su siglas en inglés), conocido como Minería de Datos (MD) en un entorno educativo, más precisamente a la información académica de la Universidad Gastón Dachary (UGD). El proceso consiste en una serie de etapas que parten de la selección y captura de los datos, pasando por una serie de actividades relacionadas a la integración, recopilación y el filtrado de los mismos (pre-procesamiento), para luego ser procesados, analizados y evaluados hasta obtener conocimiento adicional. Para ello, es necesario llevar a cabo un proceso iterativo que incluye numerosas consultas de selección a la base de datos, depuración de los datos, utilización de diferentes criterios de representación; también se aplican diferentes técnicas y algoritmos de MD, tanto descriptivas como predictivas.