Reusing optimal TSP solutions for locally modified input instances : Extended abstract

Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modificat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hromkovič, Juraj, Böckenhauer, Hans-Joachim, Forlizzi, Luca, Kneis, Joachim, Kupke, Joachim, Proietti, Guido, Widmayer, Peter
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2006
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/24414
Aporte de:
Descripción
Sumario:Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm-U (local-modification- U) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i. e., whether lm-U is computationally more tractable than U. Here, we give non-trivial examples both of problems where this is and problems where this is not the case