Ant colonies using arc consistency techniques for the set partitioning problem

In this paper, we solve some benchmarks of Set Covering Problem and Equality Constrained Set Covering or Set Partitioning Problem. The resolution techniques used to solve them were Ant Colony Optimization algorithms and Hybridizations of Ant Colony Optimization with Constraint Programming techniques...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Crawford, Broderick, Castro, Carlos
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2006
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/24244
Aporte de:
Descripción
Sumario:In this paper, we solve some benchmarks of Set Covering Problem and Equality Constrained Set Covering or Set Partitioning Problem. The resolution techniques used to solve them were Ant Colony Optimization algorithms and Hybridizations of Ant Colony Optimization with Constraint Programming techniques based on Arc Consistency. The concept of Arc Consistency plays an essential role in constraint satisfaction as a problem simplification operation and as a tree pruning technique during search through the detection of local inconsistencies with the uninstantiated variables. In the proposed hybrid algorithms, we explore the addition of this mechanism in the construction phase of the ants so they can generate only feasible partial solutions. Computational results are presented showing the advantages to use this kind of additional mechanisms to Ant Colony Optimization in strongly constrained problems where pure Ant Algorithms are not successful.