Fuzzy rule-based hand gesture recognition

This paper introduces a fuzzy rule-based method for the recognition of hand gestures acquired from a data glove, with an application to the recognition of some sample hand gestures of LIBRAS, the Brazilian Sign Language. The method uses the set of angles of finger joints for the classification of ha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bedregal, Benjamín C., Costa, Antônio Carlos da Rocha, Dimuro, Graçaliz P.
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2006
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/23919
Aporte de:
Descripción
Sumario:This paper introduces a fuzzy rule-based method for the recognition of hand gestures acquired from a data glove, with an application to the recognition of some sample hand gestures of LIBRAS, the Brazilian Sign Language. The method uses the set of angles of finger joints for the classification of hand configurations, and classifications of segments of hand gestures for recognizing gestures. The segmentation of gestures is based on the concept of monotonic gesture segment, sequences of hand configurations in which the variations of the angles of the finger joints have the same sign (non-increasing or non-decreasing). Each gesture is characterized by its list of monotonic segments. The set of all lists of segments of a given set of gestures determine a set of finite automata, which are able to recognize every such gesture.