On the class distribution labelling step sensitivity of co-training
Co-training can learn from datasets having a small number of labelled examples and a large number of unlabelled ones. It is an iterative algorithm where examples labelled in previous iterations are used to improve the classification of examples from the unlabelled set. However, as the number of ini...
Guardado en:
| Autores principales: | Matsubara, Edson T., Monard, Maria C., Prati, Ronaldo |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/23900 |
| Aporte de: |
Ejemplares similares
-
Additive edge labelings
por: Dickenstein, A., et al.
Publicado: (2010) -
Additive edge labelings
por: Dickenstein, A., et al. -
Additive edge labelings
por: Dickenstein, A., et al.
Publicado: (2010) -
Additive edge labelings
por: Dickenstein, Alicia Marcela, et al.
Publicado: (2010) -
A comparison of diferent evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem
por: Ivanissevich, María Laura, et al.
Publicado: (2000)