A study on the ability of support vector regression and neural networks to forecast basic time series patterns
Recently, novel learning algorithms such as Support Vector Regression (SVR) and Neural Networks (NN) have received increasing attention in forecasting and time series prediction, offering attractive theoretical properties and successful applications in several real world problem domains. Commonly, t...
Guardado en:
| Autores principales: | Crone, Sven F., Weber, Richard, Guajardo, José |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/23879 |
| Aporte de: |
Ejemplares similares
-
Radial basis functions versus geostatistics in spatial interpolations
por: Rusu, Cristian, et al.
Publicado: (2006) -
ALENA : Adaptive-Length Evolving Neural Arrays
por: Corbalán, Leonardo César, et al.
Publicado: (2004) -
From Imitation to Prediction, Data Compression vs Recurrent Neural Networks for Natural Language Processing
por: Laura, Juan Andrés, et al.
Publicado: (2017) -
Implementation of boolean neural networks on parallel computers
por: Carvalho, Andre Carlos Ponce de Leon Ferreira de, et al.
Publicado: (1996) -
Neural plasma
por: Berrar, Daniel, et al.
Publicado: (2006)