Neural networks applied to wireless communications
This paper presents a time-delayed neural network (TDNN) model that has the capability of learning and predicting the dynamic behavior of nonlinear elements that compose a wireless communication system. This model could help speeding up system deployment by reducing modeling time. This paper present...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/23876 |
| Aporte de: |
| Sumario: | This paper presents a time-delayed neural network (TDNN) model that has the capability of learning and predicting the dynamic behavior of nonlinear elements that compose a wireless communication system. This model could help speeding up system deployment by reducing modeling time. This paper presents results of effective application of the TDNN model to an amplifier, part of a wireless transmitter. |
|---|