Combine vector quantization and support vector machine for imbalanced datasets
In cases of extremely imbalanced dataset with high dimensions, standard machine learning techniques tend to be overwhelmed by the large classes. This paper rebalances skewed datasets by compressing the majority class. This approach combines Vector Quantization and Support Vector Machine and construc...
Guardado en:
| Autores principales: | Yu, Ting, Debenham, John, Jan, Tony, Simoff, Simeon |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/23866 |
| Aporte de: |
Ejemplares similares
-
Vector quantization.
por: Abut, Hüseyin
Publicado: (1990) -
Support Vector Machines Applications
Publicado: (2014) -
Time–Adaptive Support Vector Machines
por: Grinblat, Guillermo, et al.
Publicado: (2011) -
Vector quantization and signal compression
por: Gersho, Allen
Publicado: (1992) -
Support Vector Machines and Evolutionary Algorithms for Classification Single or Together? /
por: Stoean, Catalin
Publicado: (2014)