Learning browsing patterns for context-aware recommendation
The success of personal information agents depends on their capacity to both identify relevant information for users and proactively recommend context-relevant information. In this paper, we propose an approach to enable proactive context-aware recommendation based on the knowledge of both user inte...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/23858 |
| Aporte de: |
| Sumario: | The success of personal information agents depends on their capacity to both identify relevant information for users and proactively recommend context-relevant information. In this paper, we propose an approach to enable proactive context-aware recommendation based on the knowledge of both user interests and browsing patterns. The pro- posed approach analyzes the browsing behavior of users to derive a semantically enhanced context that points out the information which is likely to be relevant for a user according to its current activities. |
|---|