A new strategy for adapting the mutation probability in genetic algorithms
Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. Besides, there is a growing demand for up-to-date optimizati...
Guardado en:
| Autores principales: | Stark, Natalia, Minetti, Gabriela F., Salto, Carolina |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/23593 |
| Aporte de: |
Ejemplares similares
-
Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms
por: Stark, Natalia, et al.
Publicado: (2016) -
A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm
por: Bazterra, V.E., et al. -
A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm
por: Bazterra, Víctor Eduardo, et al.
Publicado: (2005) -
A simple genetic algorithm for a minimal overlapping scheduling problem
por: Olivera, Alfredo, et al.
Publicado: (2004) -
Contrasting termination criteria for genetic algorithms
por: Bermúdez, Carlos, et al.
Publicado: (1999)