Combinando clustering con aproximación espacial para búsquedas en espacios métricos

El modelo de espacios métricos permite abstraer muchos de los problemas de búsqueda por proximidad. La búsqueda por proximidad tiene múltiples aplicaciones especialmente en el área de bases de datos multimedia. La idea es construir un índice para la base de datos de manera tal de acelerar las consul...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Barroso, Marcelo, Navarro, Gonzalo, Reyes, Nora Susana
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2005
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/23138
Aporte de:
Descripción
Sumario:El modelo de espacios métricos permite abstraer muchos de los problemas de búsqueda por proximidad. La búsqueda por proximidad tiene múltiples aplicaciones especialmente en el área de bases de datos multimedia. La idea es construir un índice para la base de datos de manera tal de acelerar las consultas por proximidad o similitud. Aunque existen varios índices prometedores, pocos de ellos son dinámicos, es decir, una vez creados muy pocos permiten realizar inserciones y eliminaciones de elementos a un costo razonable. El Árbol de Aproximación Espacial (dsa–tree) es un índice recientemente propuesto, que ha demostrado tener buen desempeño en las búsquedas y que además es totalmente dinámico. En este trabajo nos proponemos obtener una nueva estructura de datos para búsqueda en espacios métricos, basada en el dsa–tree, que mantenga sus virtudes y que aproveche que en muchos espacios existen clusters de elementos y que además pueda hacer un mejor uso de la memoria disponible para mejorar las búsquedas