Evolution of neurocontrollers in changing environments
One of the most challenging aspects of the control theory is the design and implementation of controllers that can deal with changing environments, i. e., non stationary systems. Quite good progress has been made on this area by using different kind of models: neural networks, fuzzy systems, evoluti...
Guardado en:
| Autores principales: | Apolloni, Javier, Kavka, Carlos, Roggero, Patricia |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2002
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/23039 |
| Aporte de: |
Ejemplares similares
-
An architecture for fuzzy logic controllers evolution and learning in microcontrollers based environments
por: Kavka, Carlos, et al.
Publicado: (2003) -
Global and partial function approximation with evolutionary algorithms
por: Kavka, Carlos, et al.
Publicado: (2001) -
Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-gerador
por: Coelho, Leandro dos Santos, et al.
Publicado: (1997) -
Robot arm fuzzy control by a neuro-genetic algorithm
por: Kavka, Carlos, et al.
Publicado: (1998) -
Evolución de controladores difusos recurrentes basados en diagramas de voronoi
por: Kavka, Carlos, et al.
Publicado: (2004)