Aggregation algorithms for regression : A comparison with boosting and SVM techniques
Classi cation and regression ensembles sho w generalization capabilities that outperform those of single predictors. We present here a further ev aluation of tw o algorithms for ensemble construction recently proposed by us. In particular, we compare them with Boosting and Support Vector Machine tec...
Guardado en:
| Autores principales: | Granitto, Pablo Miguel, Verdes, Pablo Fabián, Ceccatto, Hermenegildo Alejandro |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2003
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/22869 |
| Aporte de: |
Ejemplares similares
-
A comparison of fitness scallng methods in evolutionary algorithms
por: Bertone, E., et al.
Publicado: (1999) -
Boosting classifiers for weed seeds identification
por: Granitto, Pablo Miguel, et al.
Publicado: (2003) -
Boosting classifiers for weed seeds identification
por: Granitto, Pablo Miguel, et al.
Publicado: (2002) -
SECA: a stepwise algorithm for construction of neural networks ensembles
por: Granitto, Pablo Miguel, et al.
Publicado: (2001) -
An abstract argumentation framework with comparison criterion
por: Martínez, Diego C., et al.
Publicado: (2003)