An architecture for fuzzy logic controllers evolution and learning in microcontrollers based environments
The growing number of control models based on combinations of neural networks, fuzzy systems and evolutionary algorithms shows that they represent a flexible and powerful approach. However, most of these models assume that there is enough CPU power for the evolutionary and learning algorithms, which...
Guardado en:
| Autores principales: | Kavka, Carlos, Roggero, Patricia, Apolloni, Javier |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2003
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/22747 |
| Aporte de: |
Ejemplares similares
-
Evolution of neurocontrollers in changing environments
por: Apolloni, Javier, et al.
Publicado: (2002) -
Robot arm fuzzy control by a neuro-genetic algorithm
por: Kavka, Carlos, et al.
Publicado: (1998) -
Global and partial function approximation with evolutionary algorithms
por: Kavka, Carlos, et al.
Publicado: (2001) -
A genetic based neuro-fuzzy controller for thermal processes
por: Goel, Ashok Kumar, et al.
Publicado: (2005) -
Redes neurais artificiais e computação evolucionária aplicados em modelagem de um turbo-gerador
por: Coelho, Leandro dos Santos, et al.
Publicado: (1997)