Towards a parallel image mining system

El análisis de imágenes puede revelar información útil para los usuarios El significativo aumento del uso de imágenes en diferentes campos de la ciencia, medicina, negocios, etc., requiere de mayor poder de procesamiento. Con el avance en la adquisición de dato multimedial y de técnicas de almacena...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fernández, Jacqueline, Guerrero, Roberto A., Miranda, Natalia Carolina, Piccoli, María Fabiana
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2007
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/22469
Aporte de:
Descripción
Sumario:El análisis de imágenes puede revelar información útil para los usuarios El significativo aumento del uso de imágenes en diferentes campos de la ciencia, medicina, negocios, etc., requiere de mayor poder de procesamiento. Con el avance en la adquisición de dato multimedial y de técnicas de almacenamiento, la necesidad de descubrir automáticamente conocimiento de grandes colecciones de imágenes aumenta. La minería de imágenes, área de investigación relativamente nueva y prometedora, trata de facilitar este trabajo proponiendo soluciones para la extracción de patrones significativos y potencialmente útiles a partir de grandes volúmenes de datos. Comprende diferentes etapas demandantes de recursos y de tiempo computacional. El uso de computación paralela representa un buen punto de partida. El proceso de minería de imágenes parece ser algorítmicamente complejo, requiriendo niveles de poder computacional que solamente los paradigmas paralelos pueden proveer. Dado que involucra conjuntos de datos de rápido crecimiento y las imágenes representan una fuente natural de paralelismo, el paralelismo puede manejar semejante colección en forma efectiva. En este trabajo examinamos el problema de la minería de imágenes y su costo computacional, proponemos una posible solución global y local y definimos futuras extensiones para la minería de imágenes paralela.