Coupling REPMAC with FDA to solve highly imbalanced classification problems
In many critical real world classification problems one of the classes has much less samples than the others (class imbalance). In a previous work we introduced the REPMAC algorithm to solve imbalanced problems. Using a clustering method, REPMAC recursively splits the majority class in several subse...
Guardado en:
| Autores principales: | Ahumada, Hernán César, Grinblat, Guillermo L., Uzal, Lucas, Ceccatto, Hermenegildo Alejandro, Granitto, Pablo Miguel |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/21686 |
| Aporte de: |
Ejemplares similares
-
SMOTE-BD: An Exact and Scalable Oversampling Method for Imbalanced Classification in Big Data
por: Basgall, María José, et al.
Publicado: (2018) -
An analysis of local and global solutions to address Big Data imbalanced classification: a case study with SMOTE preprocessing
por: Basgall, María José, et al.
Publicado: (2019) -
SMOTE-BD: An Exact and Scalable Oversampling Method for Imbalanced Classification in Big Data
por: Basgall, María José, et al.
Publicado: (2018) -
Instance retrieval from non-labeled data as a strategy for automatic classifcation of imbalanced e-mail datasets
por: Fernández, Juan Manuel, et al.
Publicado: (2022) -
A randomized algorithm for solving the satisfiability problem
por: Cecchi, Laura
Publicado: (1997)