Spherical layout implementation using centroidal voronoi tessellations
The 3D tree visualization faces multiple challenges: the election of an appropriate layout, the use of the interactions that make the data exploration easier and a metaphor that helps in the process of information understanding. A good combination of these elements will result in a visualization tha...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2009
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/20965 |
| Aporte de: |
| Sumario: | The 3D tree visualization faces multiple challenges: the election of an appropriate layout, the use of the interactions that make the data exploration easier and a metaphor that helps in the process of information understanding. A good combination of these elements will result in a visualization that effectively conveys the key features of a complex structure or system to a wide range of users and permits the analytical reasoning process. In previous works we presented the Spherical Layout, a technique for 3D tree visualization that provides an excellent base to achieve those key features. The layout was implemented using the Tri- Sphere algorithm, a method that discretized the spheres's surfaces with triangles to achieve a uniform distribution of the nodes. The goal of this work was centered in a new algorithm for the implementation of the Spherical layout; we called it the Spherical Centroidal Voronoi Tessella- tions (SCVT). In this paper we present a detailed description of this new implementation and a comparison with the TriSphere algorithm. |
|---|