Algoritmo con cobertura muestral en data mining aplicado al estudio de la biodiversidad
Enmarcadas en la biología computacional, la aplicación conjunta de técnicas de Data Mining y Simulación a secuencias muestrales de ADN con el objeto de evaluar la riqueza, principal parámetro de biodiversidad, ha producido resultados que mejoran las estimaciones usualmente realizadas por procedimien...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2012
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/18603 |
| Aporte de: |
| Sumario: | Enmarcadas en la biología computacional, la aplicación conjunta de técnicas de Data Mining y Simulación a secuencias muestrales de ADN con el objeto de evaluar la riqueza, principal parámetro de biodiversidad, ha producido resultados que mejoran las estimaciones usualmente realizadas por procedimientos solo estadísticos.
A partir del agrupamiento jerárquico de secuencias de la muestra en diferentes “clusters” que representan taxones distintos seleccionados por umbral de disimilaridad, es posible construir un modelo experimental y aplicar sobre él algoritmos de recuento de especies, o más generalmente de taxones (ARE ), que elevan a niveles compatibles con la apreciación biológica la riqueza subestimada por los procedimientos estándar. Se desarrolla aquí en detalle un algoritmo alternativo a dichos procedimientos ARE que incorpora el concepto de cobertura muestral y proporciona así estabilidad a la simulación asociada. Se procesan dos conjuntos muestrales y se obtienen conclusiones sobre el desempeño del algoritmo con cobertura muestral. |
|---|