DUDF: Differentiable Unsigned Distance Fields with Hyperbolic Scaling
In recent years, there has been a growing interest in training Neural Networks to approximate Unsigned Distance Fields (UDFs) for representing open surfaces in the context of 3D reconstruction. However, UDFs are non-differentiable at the zero level set which leads to significant errors in distances...
Guardado en:
| Autores principales: | Fainstein, Miguel, Siless, Viviana, Iarussi, Emmanuel |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/178813 |
| Aporte de: |
Ejemplares similares
-
DUDF: Differentiable Unsigned Distance Fields with Hyperbolic Scaling
por: Fainstein, Miguel, et al.
Publicado: (2024) -
DUDF: Differentiable Unsigned Distance Fields with Hyperbolic Scaling
por: Fainstein, Miguel, et al.
Publicado: (2024) -
Deep Neural Networks for Shimmer Approximation in Synthesized Audio Signal
por: García, Mario Alejandro, et al.
Publicado: (2017) -
Detecting DNS Threats: A Deep Learning Model to Rule Them All
por: Palau, Franco, et al.
Publicado: (2019) -
Exploring the role of phonetic bottleneck features for speaker and language recognition
por: McLaren, M., et al.