Diagnóstico automatizado de auscultación pulmonar pediátrica usando redes neuronales profundas

En este trabajo se investiga la implementación de redes neuronales profundas en la clasificación de sonidos respiratorios, una tarea determinante para el diagnóstico de enfermedades pulmonares. Para esta labor, se emplea la arquitectura VGG-16, reconocida por su eficacia en la clasificación de imáge...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: López Pérez, Jorge I., Taire, Damián Leonardo, Delrieux, Claudio
Formato: Articulo
Lenguaje:Español
Publicado: 2025
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/178018
Aporte de:
Descripción
Sumario:En este trabajo se investiga la implementación de redes neuronales profundas en la clasificación de sonidos respiratorios, una tarea determinante para el diagnóstico de enfermedades pulmonares. Para esta labor, se emplea la arquitectura VGG-16, reconocida por su eficacia en la clasificación de imágenes, la cual ha sido adaptada para procesar datos de audio. Se realizaron la recopilación y preprocesamiento del conjunto de datos de sonidos respiratorios, utilizando coeficientes cepstrales de frecuencia de Mel (MFCC´s) como entrada de la red. Los resultados obtenidos revelan un rendimiento significativo, con una precisión del 79% en la clasificación de sonidos respiratorios. Este resultado resalta el potencial de las redes neuronales convolucionales pre entrenadas en el campo médico. Sin embargo, persisten desafíos por superar, como la necesidad de conjuntos de datos más amplios y una comprensión más profunda de los resultados para su implementación clínica efectiva.