Electricity demand forecast model based on meteorological and historical demand data using artificial neural networks
Accurate forecasting of electricity demand is crucial for improving transmission system operation through optimized use of resources, operation planning, and minimized outages. The dynamic of electricity demand depends on exogenous factors (e.g., meteorological conditions), but the relationships bet...
Guardado en:
| Autores principales: | Uhrig, Mariela N., Vignolo, Leandro D., Müller, Omar V. |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/177174 |
| Aporte de: |
Ejemplares similares
-
LSTM recurrent neural network for energy demand forecasting
por: Alarcón, Rodrigo Germán, et al.
Publicado: (2024) -
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting
por: Pérez Bello, Dinibel, et al.
Publicado: (2019) -
Modelado y predicción de la demanda eléctrica: comparación de enfoques estadísticos y de aprendizaje automático
por: Uhrig, Mariela N., et al.
Publicado: (2025) -
Next generation demand management : people, process, analytics, and technology /
por: Chase, Charles
Publicado: (2016) -
Operational weather forecasting
por: Inness, Peter (Peter M.)
Publicado: (2013)