Clasificación de uso y cobertura del suelo basada en modelos de aprendizaje de máquina supervisados
La obtención de información geográfica de usos y coberturas del suelo (LULC) es crucial para el monitoreo espacio-temporal de la actividad agrícola y de sus efectos sobre el ambiente. En este marco, el objetivo del trabajo fue comparar la performance de Google Earth Engine (GEE) y del complemento Se...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/176972 |
| Aporte de: |
| Sumario: | La obtención de información geográfica de usos y coberturas del suelo (LULC) es crucial para el monitoreo espacio-temporal de la actividad agrícola y de sus efectos sobre el ambiente. En este marco, el objetivo del trabajo fue comparar la performance de Google Earth Engine (GEE) y del complemento Semi-automatic Classification Plugin (SCP) dentro de QGis para clasificar LULC en imágenes multiespectrales Sentinel-2. Los modelos fueron aplicados a una región del centro-sur del sistema de Ventania, en el suroeste de la provincia de Buenos Aires, Argentina y validados con información medida in situ. Los resultados indican que ambos modelos son capaces de clasificar LULC con una precisión entre 77.6 % y 97.8%, habiendo obtenido mejores resultados con GEE. |
|---|