Modelos de aprendizaje automático para el procesamiento y análisis de datos astronómicos

El objetivo general de mi plan es el desarrollo y la aplicación de modelos de Aprendizaje Automático capaces de procesar, detectar y clasificar diversos tipos de datos astronómicos. Por un lado, se trabajará con datos espectroscópicos adquiridos durante el siglo pasado. Estos datos actualmente se en...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ponte Ahón, Santiago Andres
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2024
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/173170
Aporte de:
Descripción
Sumario:El objetivo general de mi plan es el desarrollo y la aplicación de modelos de Aprendizaje Automático capaces de procesar, detectar y clasificar diversos tipos de datos astronómicos. Por un lado, se trabajará con datos espectroscópicos adquiridos durante el siglo pasado. Estos datos actualmente se encuentran almacenados en placas de vidrio en la Facultad de Ciencias Astronómicas y Geofísicas (UNLP). Este material comenzó a ser digitalizado a partir de 2019 a través del proyecto "Recuperación del Trabajo Observacional Histórico" (ReTrOH). Los objetivos particulares de esta linea de investigación son los siguientes:- Estudiar y analizar métodos y pipelines existentes para el procesamiento de datos astronómicos de legado tales como las placas espectrográficas antiguas.- Desarrollar una solución totalmente automatizada para resolver el problema de calibración en longitud de onda que actualmente se resuelve mediante un proceso manual, largo y especializado.- Desarrollar métodos que resuelvan la totalidad del procesamiento de forma automática y que permitan la resolución eficaz de cantidades masivas de estos datos.Por otra parte, se plantea como objetivo de esta Tesis el desarrollo y aplicación de modelos basados en Aprendizaje Automatico (AA) para analizar, clasificar y procesar automáticamente objetos astronómicos.Los objetivos particulares son los siguientes:- Estudiar y analizar métodos existentes para identificar y clasificar objetos astronómicos en base a datos espectroscópicos y fotométricos, haciendo foco en la detección de Estrellas masivas jovenes, como las Be.- Desarrollar algoritmos de extracción de características que permitan identificar la información de las bases de datos disponibles para poder generalizar adecuadamente los modelos.- Desarrollar modelos basados en Redes Neuronales Artificiales para abordar el problema del desbalance de clases en bases de datos astronómicas.