Global Search Regression (GSREG): a new automatic model selection technique for cross-section, time series and panel data regressions

Este artículo presenta las principales características del comando GSREG (Global Search Regression), una nueva técnica modelos de selección automática de variables. Como otros algoritmos de búsqueda exhaustiva (por ejemplo VSELECT) GSREG evita las los problemas de la dependencia respecto del punto i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gluzmann, Pablo Alfredo, Panigo, Demian Tupac
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2014
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/170346
Aporte de:
Descripción
Sumario:Este artículo presenta las principales características del comando GSREG (Global Search Regression), una nueva técnica modelos de selección automática de variables. Como otros algoritmos de búsqueda exhaustiva (por ejemplo VSELECT) GSREG evita las los problemas de la dependencia respecto del punto inicial (como PCGETS o RETINA). Sin embargo, GSREG es el primer código Stata que: 1) garantiza el óptimo con criterios de selección fuera de la muestra de estimación; 2) permite realizar test de residuos para cada alternativa; y 3) establece (dependiendo de las especificaciones del usuario) una base de datos con información completa sobre estadísticas para cada modelo alternativo.