High-energy emission as signature of magnetic field amplification in neutron star mergers
The merger of a binary neutron star system is suggested as the central engine of short gamma-ray bursts (sGRBs). For the merger process, simulations predict that magnetic field is amplified beyond magnetar field strength by Kelvin-Helmholtz instabilities. With the Large Area Telescope (LAT), bursts...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/167889 |
| Aporte de: |
| Sumario: | The merger of a binary neutron star system is suggested as the central engine of short gamma-ray bursts (sGRBs). For the merger process, simulations predict that magnetic field is amplified beyond magnetar field strength by Kelvin-Helmholtz instabilities. With the Large Area Telescope (LAT), bursts have been detected that show a temporally extended component in coincidence with a short-lasting peak at the end of the prompt phase. We show that the presence of these LAT components in a sGRB could provide evidence of magnetic field amplification in the neutron star merger. |
|---|