Extracción de reglas de redes neuronales feedforward entrenadas con lógica de primer orden

La necesidad de integración neural-simbólica se hace evidente a medida que se abordan problemas más complejos, y que van más allá de tareas de dominio limitadas como lo es la clasificación. Los métodos de búsqueda para la extracción de reglas de las redes neuronales funcionan enviando combinaciones...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Negro, Pablo, Pons, Claudia
Formato: Articulo
Lenguaje:Español
Publicado: 2024
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/167050
Aporte de:
Descripción
Sumario:La necesidad de integración neural-simbólica se hace evidente a medida que se abordan problemas más complejos, y que van más allá de tareas de dominio limitadas como lo es la clasificación. Los métodos de búsqueda para la extracción de reglas de las redes neuronales funcionan enviando combinaciones de datos de entrada que activan un conjunto de neuronas. Ordenando adecuadamente los pesos de entrada de una neurona, es posible acotar el espacio de búsqueda. Con base en esta observación, este trabajo tiene por objetivo presentar un método para extraer el patrón de reglas aprendido por una red neuronal entrenada feedforward, analizar sus propiedades y explicar estos patrones a través del uso de lógica de primer orden (FOL).