On the construction of the trace in Serre duality : Notas de Matemática, 33

The object of this lecture is to construct this diagram in the chain level, in the case Y is a complete intersection of arbitrary codimension. To this purpose, we represent local cohomology clases of X by semi-meromorphic forms with poles in the union U(Y1:1 ≤ 1 ≤ n), and define the trace by means o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Herrera, Miguel
Formato: Publicacion seriada
Lenguaje:Inglés
Publicado: 1976
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/166364
Aporte de:
id I19-R120-10915-166364
record_format dspace
spelling I19-R120-10915-1663642024-05-23T20:09:12Z http://sedici.unlp.edu.ar/handle/10915/166364 On the construction of the trace in Serre duality : Notas de Matemática, 33 Herrera, Miguel 1976 2024-05-23T17:35:27Z en Matemática The object of this lecture is to construct this diagram in the chain level, in the case Y is a complete intersection of arbitrary codimension. To this purpose, we represent local cohomology clases of X by semi-meromorphic forms with poles in the union U(Y1:1 ≤ 1 ≤ n), and define the trace by means of the residual currents introduced in (2) and (3). Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP). Facultad de Ciencias Exactas Publicacion seriada Publicacion seriada http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Matemática
spellingShingle Matemática
Herrera, Miguel
On the construction of the trace in Serre duality : Notas de Matemática, 33
topic_facet Matemática
description The object of this lecture is to construct this diagram in the chain level, in the case Y is a complete intersection of arbitrary codimension. To this purpose, we represent local cohomology clases of X by semi-meromorphic forms with poles in the union U(Y1:1 ≤ 1 ≤ n), and define the trace by means of the residual currents introduced in (2) and (3).
format Publicacion seriada
Publicacion seriada
author Herrera, Miguel
author_facet Herrera, Miguel
author_sort Herrera, Miguel
title On the construction of the trace in Serre duality : Notas de Matemática, 33
title_short On the construction of the trace in Serre duality : Notas de Matemática, 33
title_full On the construction of the trace in Serre duality : Notas de Matemática, 33
title_fullStr On the construction of the trace in Serre duality : Notas de Matemática, 33
title_full_unstemmed On the construction of the trace in Serre duality : Notas de Matemática, 33
title_sort on the construction of the trace in serre duality : notas de matemática, 33
publishDate 1976
url http://sedici.unlp.edu.ar/handle/10915/166364
work_keys_str_mv AT herreramiguel ontheconstructionofthetraceinserredualitynotasdematematica33
_version_ 1807223240351809536