Clasificación inteligente de cultivos de verano en la plataforma Google Earth Engine
El monitoreo espacial de zonas agrícolas es de fundamental importancia para la toma de decisiones económicas, sociales y políticas. El objetivo de este trabajo es obtener un modelo de clasificación supervisada de cultivos de verano mediante técnicas de aprendizaje de máquina a partir del uso de imág...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2023
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/165445 |
| Aporte de: |
| Sumario: | El monitoreo espacial de zonas agrícolas es de fundamental importancia para la toma de decisiones económicas, sociales y políticas. El objetivo de este trabajo es obtener un modelo de clasificación supervisada de cultivos de verano mediante técnicas de aprendizaje de máquina a partir del uso de imágenes multiespectrales. La región elegida es el centro-sur del sistema de Ventania, en el sudoeste de la provincia de Buenos Aires, Argentina. Para la implementación del modelo basado en Random Forest (RF) se utilizó información de bandas e índices espectrales obtenidos a partir de imágenes Sentinel 2 en la plataforma Google Earth Engine (GEE). En el modelo obtenido la precisión global supera el 94%, donde se pudo discernir con una gran fiabilidad los cultivos de maíz, sorgo, girasol y pastizales. Estos resultados iniciales demuestran ser una valiosa herramienta para la gestión agrícola y la implementación de GEE facilitó la automatización de todo el proceso, reduciendo los tiempos de trabajo. |
|---|