Mejorando la identificación de marcas de ganado vacuno: redes siamesas en el aprendizaje de funciones de distancia

Las Búsquedas por Similitud son importantes en diversas aplicaciones, incluyendo la identificación de marcas de ganado vacuno para el registro ganadero. Para calcular la similitud entre estas marcas, se utilizan funciones de distancia que miden dicha similitud en base a sus características, o en for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Stauber, Federico, Planas, Adrián, Pascal, Andrés
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2023
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/164829
Aporte de:
Descripción
Sumario:Las Búsquedas por Similitud son importantes en diversas aplicaciones, incluyendo la identificación de marcas de ganado vacuno para el registro ganadero. Para calcular la similitud entre estas marcas, se utilizan funciones de distancia que miden dicha similitud en base a sus características, o en forma directa a partir de las imágenes correspondientes. En esta última década, las Redes Neuronales Profundas Convolucionales (CNN) han alcanzado muy buena performance en el procesamiento de imágenes. En este artículo se propone un método de preprocesamiento, aumentación de datos y modelos de CNN para aprender una función de distancia en un escenario de One-Shot learning utilizando una arquitectura de Redes Siamesas como mecanismo de entrenamiento.