Software de procesamiento automático de placas espectrográficas

La Facultad de Ciencias Astronómicas y Geofísicas, a través del proyecto de Recuperación del Trabajo Observacional Histórico (ReTrOH), se encuentra realizando un proceso de digitalización de una gran colección de placas espectroscópicas en formato de vidrio. Por otro lado, en la actualidad las Redes...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pereyra, Nehuén, Ponte Ahón, Santiago Andrés, Aidelman, Yael Judith, Ronchetti, Franco, Quiroga, Facundo Manuel, Gamen, Roberto Claudio, Cidale, Lydia Sonia
Formato: Articulo
Lenguaje:Español
Publicado: 2023
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/164779
Aporte de:
Descripción
Sumario:La Facultad de Ciencias Astronómicas y Geofísicas, a través del proyecto de Recuperación del Trabajo Observacional Histórico (ReTrOH), se encuentra realizando un proceso de digitalización de una gran colección de placas espectroscópicas en formato de vidrio. Por otro lado, en la actualidad las Redes Neuronales son los modelos de Aprendizaje Automático con mejor desempeño capaces de resolver una gran variedad de problemas. Son modelos generales y aproximadores universales. En los últimos años, se ha conseguido entrenar Redes Neuronales con múltiples capas mediante un conjunto de técnicas que suelen denominarse Aprendizaje Profundo. En este contexto, estamos desarrollando un software de procesamiento automático de las placas espectrográficas, que detecta los espectros de ciencia individuales que en estas hubiera con Aprendizaje Profundo y permite, además, cargar sus respectivos metadatos.