Software de procesamiento automático de placas espectrográficas
La Facultad de Ciencias Astronómicas y Geofísicas, a través del proyecto de Recuperación del Trabajo Observacional Histórico (ReTrOH), se encuentra realizando un proceso de digitalización de una gran colección de placas espectroscópicas en formato de vidrio. Por otro lado, en la actualidad las Redes...
Guardado en:
| Autores principales: | , , , , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Español |
| Publicado: |
2023
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/164779 |
| Aporte de: |
| Sumario: | La Facultad de Ciencias Astronómicas y Geofísicas, a través del proyecto de Recuperación del Trabajo Observacional Histórico (ReTrOH), se encuentra realizando un proceso de digitalización de una gran colección de placas espectroscópicas en formato de vidrio. Por otro lado, en la actualidad las Redes Neuronales son los modelos de Aprendizaje Automático con mejor desempeño capaces de resolver una gran variedad de problemas.
Son modelos generales y aproximadores universales. En los últimos años, se ha conseguido entrenar Redes Neuronales con múltiples capas mediante un conjunto de técnicas que suelen denominarse Aprendizaje Profundo.
En este contexto, estamos desarrollando un software de procesamiento automático de las placas espectrográficas, que detecta los espectros de ciencia individuales que en estas hubiera con Aprendizaje Profundo y permite, además, cargar sus respectivos metadatos. |
|---|