Dinámica de propagación del daño en un modelo de Ising bidimensional

En. este trabajo se estudia la dinámica de propagación de un pequeño daño inicial en un modelo de Ising bidimensional. Esta es estudiada a la temperatura crítica usando una dinámica particular llamada Glauber. Para caracterizar la propagación del daño se midieron: la densidad de espines dañados al t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Montani, Fernando Fabián
Otros Autores: Albano, Ezequiel Vicente
Formato: Tesis Tesis de grado
Lenguaje:Español
Publicado: 1996
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/161075
Aporte de:
Descripción
Sumario:En. este trabajo se estudia la dinámica de propagación de un pequeño daño inicial en un modelo de Ising bidimensional. Esta es estudiada a la temperatura crítica usando una dinámica particular llamada Glauber. Para caracterizar la propagación del daño se midieron: la densidad de espines dañados al tiempo t, Nd(t), la probabilidad de sobrevida del daño a un tiempo t, P(/), y la distancia cuadrática media a la cual se propagó el daño a un tiempo t, R2(t). A la temperatura crítica estas cantidades medidas cumplen leyes de potencias con los exponentes críticos dinámicos respectivos η ≃ 1.11 ± 0.03, δ ≃ 0.58 ± 0.03 y z* ≃ 1.19 ± 0.03. Se obtuvo la dimensión fractal de la región dañada a través de estos exponentes dinámicos, mediante la siguiente relación de escala: df = 2η/z* Se encuentra que esta relación nos da la dimensión fractal de las gotas de Ising (Ising drops). Además se propone la siguiente relación entre los exponentes críticos dinámicos y estáticos característicos del proceso de dispersión del daño: d(l — η/z*} = β/ν donde d es la dimensión del espacio, β el exponente del parametro de orden y v el exponente de la longitud de correlación.