Information-theoretic methods for studying population codes

Population coding is the quantitative study of which algorithms or representations are used by the brain to combine together and evaluate the messages carried by different neurons. Here, we review an information-theoretic approach to population coding. We first discuss how to compute the information...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ince, Robin A.A., Senatore, Riccardo, Arabzadeh, Ehsan, Montani, Fernando Fabián, Diamond, Mathew E., Panzeri, Stefano
Formato: Articulo
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/160253
Aporte de:
Descripción
Sumario:Population coding is the quantitative study of which algorithms or representations are used by the brain to combine together and evaluate the messages carried by different neurons. Here, we review an information-theoretic approach to population coding. We first discuss how to compute the information carried by simultaneously recorded neural populations, and in particular how to reduce the limited sampling bias which affects the calculation of information from a limited amount of experimental data. We then discuss how to quantify the contribution of individual members of the population, or the interaction between them, to the overall information encoded by the considered group of neurons. We focus in particular on evaluating what is the contribution of interactions up to any given order to the total information. We illustrate this formalism with applications to simulated data with realistic neuronal statistics and to real simultaneous recordings of multiple spike trains.