Iterated Aluthge transforms: a brief survey

Given an r × r complex matrix T, if T = U|T| is the polar de- composition of T, then the Aluthge transform is defined by ∆(T) = |T|1/2U|T|1/2. Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0(T) = T and ∆n(T) = ∆(∆n−1(T)), n 2 N. In this paper we make a brief survey on the known...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Antezana, Jorge Abel, Pujals, Enrique R., Stojanoff, Demetrio
Formato: Articulo
Lenguaje:Inglés
Publicado: 2008
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/156336
Aporte de:
Descripción
Sumario:Given an r × r complex matrix T, if T = U|T| is the polar de- composition of T, then the Aluthge transform is defined by ∆(T) = |T|1/2U|T|1/2. Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0(T) = T and ∆n(T) = ∆(∆n−1(T)), n 2 N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n ∊ N converges for every r ×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003.