Early detection of grapevine diseases using pre-trained Convolutional Neural Networks

This paper proposes to apply pre-trained Convolutional Neural Networks (CNN) for the early detection of two common grapevine diseases: peronospora and o´ıdio. These diseases present similar symptoms and are of great viticultural importance. Our objective is to train a CNN using transfer learning tec...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rios, Cristian Emmanuel, Estrebou, César Armando, Frati, Fernando Emmanuel
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2023
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/155434
Aporte de:
Descripción
Sumario:This paper proposes to apply pre-trained Convolutional Neural Networks (CNN) for the early detection of two common grapevine diseases: peronospora and o´ıdio. These diseases present similar symptoms and are of great viticultural importance. Our objective is to train a CNN using transfer learning techniques to accurately detect the presence of early symptoms of the diseases under study. To achieve that, we’ll design a pipeline that starts with data acquisition in the field and finalizes with the early disease identification, including class definition, labeling, image preprocessing and training process of the CNN, employing edge computing-based service computing paradigm to overcome some inherent problems of traditional mobile cloud computing paradigm.